Introduction	Health shock process	lifecycle model	calibration	results
000000	000000000	0000	000	00000000

The Lifetime Costs of Bad Health

Mariacristina De Nardi University of Minnesota, CEPR, NBER

> Svetlana Pashchenko University of Georgia

Ponpoje Porapakkarm (Poe) National Graduate Institute for Policy Studies (GRIPS)

April 2022

Workshop on the Economics of Ageing

De Nardi, Pashchenko, and Porapakkarm

Lifetime Cost of Bad Health

#A. Large difference in economic outcomes by health

Among men with high-school degree, on average ...

- i. The healthy earn 37% more (conditional on working)...
- ii. ...and have 65 % more wealth at the time of retirement

▶ Wealth gradient (HRS)

#B. Two important questions

- What generates this large difference?
- How costly it is to be unhealthy from the entire life-cycle perspective?

Introduction	Health shock process	lifecycle model	calibration	results
00000		0000	000	00000000
Linking hea	Ith and economic ou	itcomes		

- Ch.1: Health affects economic outcomes
- *Ch.2:* Economic outcomes affect health
- Ch.3: Healthy and unhealthy people are innately different
- \Rightarrow *Ch.3* is well-recognized but overlooked (or too simplified) in existing structural studies
- \Rightarrow Our paper combines *Ch.1* with detailed investigation of *Ch.3*

Introduction	Health shock process	lifecycle model	calibration	results
000000		0000	000	00000000
Innate diffe	rences between the h	nealthy and unhea	althy	

What is *Ch.3*?

- People differ in genetics, personality traits, early life experiences, etc.
- Growing empirical literature emphasizes the importance of these factors for outcomes later in life. (Anda et al., 2006; Barth et al., 2020; Case et al., 2005; Conti et al.,2005; among many others)
- We introduce these complex unobserved heterogeneity into a structural life-cycle model
- People differ in fixed characteristics that are multi-dimensional and possibly correlated among each other.

Introduction	Health shock process	lifecycle model	calibration	results
000000		0000	000	00000000
What we do?	The broad pictu	re		

1st **Part** : Estimate health shock process

- New data facts related to duration dependence of health status
- Formulate and estimate heath shock process that is consistent with these facts
- ► Key Finding :
 - *Health types* are an important driver of health dynamics even controlling for long history-dependence

Introduction	Health shock process	lifecycle model	calibration	results
000000		0000	000	00000000
What we do?	The broad pictur	e (cont.)		

2nd **Part**: Study interaction of health and economic outcomes in a structural model

Estimate a life cycle model augmented with the health shock and correlated ex-ante heterogeneity:

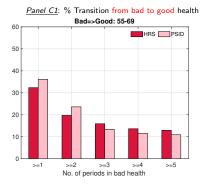
{ health type, fixed labor productivity, patience }

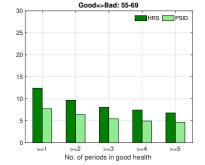
- Show that the correlated heterogeneity is important in explaining disparity in economic outcomes by health
- Quantify how costly it is to be unhealthy

Introduction	Health shock process	lifecycle model	calibration	results
00000		0000	000	00000000
Data				

- 1. Health and Retirement Study (HRS: 1994-2016)
- 2. Panel Study of Income Dynamics (PSID)
 - Annual data (1984-1997); bi-annual (1997-2017)
- 3. Medical Expenditure Panel Survel (MEPS: 1999-2017)

Introduction	Health shock process	lifecycle model	calibration	results
000000		0000	000	00000000
Outline of	the presentation			


► Life-cycle model


► Model estimation (MSM)

Introduction Health shock process of occurrence of the shock process of

Duration-dependent profile by health status (55-69 years old)

Panel C2: % Transition from good to bad health

- The difference between waves is 2 years

Introduction	Health shock process	lifecycle model	calibration	results
000000		0000	000	00000000
Health show	ck process			

How we can account for these facts?

- Duration dependence
- Fixed health type
- Heterogeneity within bad health state

Formulate ordered logit model of health shock that allows for

- History-dependence (τ_B, τ_G) and discrete health type (η)
- Different transitions probabilities for two subcategories of bad health (B): fair (F) and poor (P)

Introduction	Health shock process	lifecycle model	calibration	results
000000		0000	000	00000000
Health sho	ock process			

If $h_t \in \{P, F\}$ and duration of bad health (*P* or *F*) is τ_B :

$$logit\left[Pr\left(P_{t+1} \mid h_{t}, \tau_{B}, \eta\right)\right] = \underbrace{f_{age}^{h}\left(t\right)}_{age \text{ polynomial}} + \underbrace{\sum_{\tau=1}^{T-1} a_{\tau}^{B} \mathbf{1}_{(\tau_{B}=\tau)} + a_{T}^{B} \mathbf{1}_{(\tau_{B}\geq T)}}_{duration \text{ dependence}} + \underbrace{a_{\eta}^{B} \mathbf{D}_{\eta}}_{health \text{ type}}$$
$$logit\left[Pr\left(F_{t+1} \cup P_{t+1} \mid h_{t}, \tau_{B}, \eta\right)\right] = f_{age}^{h}\left(t\right) + \sum_{\tau=1}^{T-1} a_{\tau}^{B} \mathbf{1}_{(\tau_{B}=\tau)} + a_{T}^{B} \mathbf{1}_{(\tau_{B}\geq T)} + b_{1} + a_{\eta}^{B} \mathbf{D}_{\eta}$$

• If $h_t = G$ and duration of good health is τ_G :

$$logit\left[Pr\left(P_{t+1} \mid G_{t}, \tau_{G}, \eta\right)\right] = f_{age}^{G}\left(t\right) + \sum_{\tau=1}^{T-1} a_{\tau}^{G} \mathbf{1}_{(\tau_{G}=\tau)} + a_{T}^{G} \mathbf{1}_{(\tau_{G}\geq T)} + a_{\eta}^{G} \mathbf{D}_{\eta}$$
$$logit\left[Pr\left(F_{t+1} \cup P_{t+1} \mid G_{t}, \tau_{G}, \eta\right)\right] = f_{age}^{G}\left(t\right) + \sum_{\tau=1}^{T-1} a_{\tau}^{G} \mathbf{1}_{(\tau_{G}=\tau)} + a_{T}^{G} \mathbf{1}_{(\tau_{G}\geq T)} + b_{2} + a_{\eta}^{G} \mathbf{D}_{\eta}$$

De Nardi, Pashchenko, and Porapakkarm

Lifetime Cost of Bad Health

Introduction	Health shock process	lifecycle model	calibration	results
000000	○○○○●○○○○○	0000		00000000
Health sho	ock process (cont.)			

Health type prediction

- η is distributed over 3 discrete points
- Ordered logit model of health type prediction:

$$logit \left[Pr(\eta_1 \mid \mathbf{X}_{t_0}) \right] = \mathbf{B}_{\eta} \mathbf{X}_{t_0}$$

$$logit \Big[Pr(\eta_1 \cup \eta_2 \mid \mathbf{X}_{t_0}) \Big] = \mathbf{B}_{\eta} \mathbf{X}_{t_0} + b_{\eta_2}$$

- $Pr(\eta_1 \cup \eta_2 \cup \eta_3 \mid \mathbf{X}_{t_0}) = 1$
- t_0 is the first age an individual was observed in the data.
- \mathbf{X}_{t_0} : initial health, initial wealth, fixed labor productivity (γ), age t_0 , birth cohort (10-year bracket)

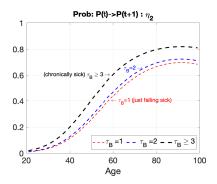
Introduction	Health shock process	lifecycle model	calibration	results
000000	○○○○○●○○○○	0000	000	00000000
Results :	Key findings			

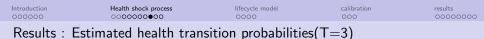
 Health type is always significant even when controlling for long lagged health history (up to 8 years)

• Health type (η) is correlated with fixed labor productivity (γ)

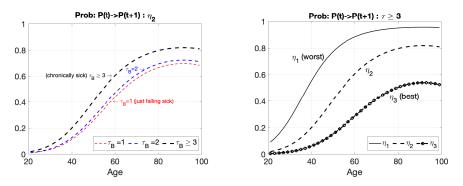
	η_1	η_2	η_3
$Pr(\eta)$	0.08	0.35	0.57
$Pr(\eta \mid \gamma_L)$	0.13	0.44	0.43
$Pr(\eta \mid \gamma_M)$	0.08	0.36	0.56
$Pr\left(\eta\mid\gamma_{H} ight)$	0.04	0.24	0.72

Measure of η at age 21 (T=3)

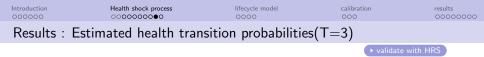

(* Use initial health, fixed labor productivity, wealth among people (21-24) in PSID)

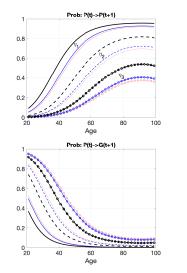

Health type prediction

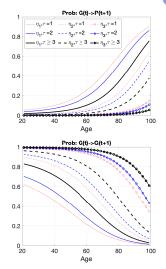
model vs data


Introduction	Health shock process	lifecycle model	calibration	results
000000		0000	000	00000000
Results ·	Estimated health trans	ition probabilities	(T=3)	

History dependence : fix health type to η_2




History dependence vs. Fixed health type



Key findings

Variation in health transition probabilities across health types is much larger than that across health histories

Introduction	Health shock process	lifecycle model	calibration	results
000000	00000000	0000	000	0000000

How should we think about health type?

Model: People with bad health type experience multiple periods being unhealthy

► *HRS:* Characteristics of people by #periods being unhealthy

# unhealthy	nealthy Individuals' characteristics ^a (HRS)				$\% \eta_1$	
periods	% smoking	BMI ^b	% father alive	% mother alive	parents' educ (yrs) ^c	in model
0-1	22.6	27.9	21.6	48.4	10.1 / 10.5	0.1
2-3	27.1	29.5	21.5	50.4	9.2 / 9.9	3.1
4-5	44.4	29.8	16.1	36.5	8.4 / 9.2	26.0

^a All variables are reported at age 55-56.

^b BMI is the average Body Mass Index.

^c The first and second numbers are the average educational years of father and mother, respectively.

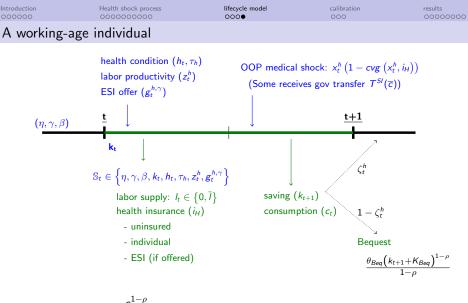
# unhealthy	Polygenic scores (HRS)				
periods	educational attainment	smoking	BMI	longevity	
0-1	-0.120	0.003	-0.006	-0.06	
2-3	-0.216	0.023	0.127	-0.065	
4-5	-0.708	0.092	0.140	-0.250	

Introduction	Health shock process	lifecycle model	calibration	results
000000		●000	000	00000000
Outline				

Life-cycle model

► Model estimation (MSM)

Introduction	Health shock process	lifecycle model	calibration	results
000000		○●○○	000	00000000
Key mechar	nisms			


- The observed correlation between health and life-cycle outcomes is generated by two mechanisms
- 1 Causal effects of bad health:
 - a. Decreases productivity and increases disutility from work
 - b. Increases OOP medical spending
 - c. Lowers life expectancy
- 2 Composition effect:
 - Heterogeneity in health types (η), fixed productivity (γ), and patience (β)
 - $\{\eta, \gamma, \beta\}$ are correlated

Introduction	Health shock process	lifecycle model	calibration	results
000000		○○●○	000	00000000
Life-cycle r	nodel			

- ▶ 21-64 \rightarrow work, 65-99 \rightarrow retired ...(model period = 2 yrs)
- Health type: $\eta \in \{\eta_1, \eta_2, \eta_3\}$ and discount factor: $\beta \in \{\beta_{low}, \beta_{high}\}$

 $0 \leq Pr(\beta_j | \eta_m) \leq 1; j \in \{low, high\}, m \in \{1, 2, 3\}$

- People face productivity, health, medical expenses, and survival uncertainty
- Retired people receive Social Security benefits and are covered by Medicare

$$u(c_t, l_t, h_t) = \frac{c_t}{1 - \rho} - \phi_W \mathbf{1}_{\{l_t > 0\}} - \phi_F \mathbf{1}_{\{h_t = F, l_t > 0\}} - \phi_P \mathbf{1}_{\{h_t = P, l_t > 0\}} + \overline{\mathbf{b}}$$

HH prot

De Nardi, Pashchenko, and Porapakkarm

Introduction	Health shock process	lifecycle model	calibration	results
000000		0000	●○○	00000000
Outline				

► Life-cycle model

Model estimation (MSM)

Results

Introduction	Health shock process	lifecycle model	calibration	results
000000	000000000	0000	000	0000000

Model parameters taken/estimated outside model

parameters		sources
Survival probability by health:	ζ_t^h	HRS
		(extrapolation from 21 to 50)
Health transition probability:		PSID
Labor productivity shock:	z_t^h	PSID
Health-dependent medical expenses:	x_t^h	MEPS
Insurance coverage:	$cvg(x_t^h, i_H)$	MEPS
ESI offer probability (logit) :	$g_t^{h,\gamma}$	MEPS
Risk aversion:	$\rho = 3.0$	common values $\in [1, 5]$

Parameters taken/estimated outside model

Iabor productivity shock

Introduction	Health shock process	lifecycle model	calibration	results
000000		0000	○○●	00000000
Deveneters	actionated incide ma	طما		

Parameters estimated inside model

parameters	value			targets
$\{\beta_{low}, \beta_{high}\}$	$\{0.877, 0.992\}$			"
$Pr(eta_{low} \eta_i)$	$\frac{\eta_1}{0.78}$	η ₂ 0.79	η ₃ 0.38	net wealth profiles by health (PSID)
consumption floor (per year): \overline{c}		\$3,505		11

* η_1 is the worst health type

- $\overline{\mathbf{b}} \Rightarrow$ Statistical Value of Life (SVL)
 - Compensation for adding 1 death among 10,000 adults:
 - Empirical SVL = 1-16M USD
 - Model: average SVL among working-age individuals = 2M USD

Introduction	Health shock process	lifecycle model	calibration	results
000000		0000	000	●○○○○○○
Results				

- R1. The importance of compositional difference
- R2. Lifetime monetary losses due to bad health
- R3. Lifetime welfare losses due to bad health

Introduction	Health shock process	lifecycle model	calibration	results
000000	000000000	0000	000	0000000

R1 : The importance of compositional difference

Re-estimate the model but restricting $Pr(\beta_{low}|\eta_i) = 0.50$.

Wealth difference between healthy and unhealthy people at ages 60-64.

Wealth difference by health	PSID (HRS)	Baseline	No (β,η) correlation
25 th pct	\$56 (\$47)	\$67	\$38
50 th pct	\$142 (\$98)	\$146	\$38
75 th pct	\$210 (\$222)	\$260	\$91
in 1000USD			

IN 100005D

- No correlation between types and patience misses health-wealth gradient

- Income-health gradient does not imply wealth-health gradient

Introduction	Health shock process	lifecycle model	calibration	results
000000		0000	000	○○●○○○○○
R1. The m	onetary cost of bad	health		

- Construct "always healthy" counterfactual
- Individuals always draw good health (unexpectedly)
- Let y_t^{BS} and y_t^H are income net of total medical expenses in baseline and "always healthy" cases.
- Measure of lifetime monetary losses :

$$\frac{1}{T} \sum_{t=1}^{T} \frac{y_t^H - y_t^{BS}}{(1+r)^t}$$

T is age at death

Introduction	Health shock process	lifecycle model	calibration	results
000000	000000000	0000	000	00000000

R2. Lifetime monetary losses due to bad health

	Over entire life-cycle (21-death)			
	All	η_1	η_2	η_3
% of time in bad health	15%	58%	23%	4%
Annual monetary losses (% of avg earning)	\$1,511 <i>(3.9%)</i>	\$8,896 <i>(23%)</i>	\$1,935 <i>(5%)</i>	\$225 (0.6%)
Composition (%)				
- Medical losses paid by insurance	36%	33%	39%	39%
- Out-of-pocket medical losses	27%	22%	30%	36%
- Income losses	37%	45%	31%	24%

- Using 2% interest rate

- Average earning (2013) is \$38,648

- \blacktriangleright Losses vary a lot across η
- Income losses account for almost 40%

R3. Lifetime welfare losses due to bad health

Again, construct "always healthy" counterfactual

Measure of lifetime welfare losses due to bad health

Individual's life time utility in the baseline and "always heathy" cases:

$$U^{BS} = \sum_{t=1}^{T_d+1} \beta^t \Big(u(\boldsymbol{c}_t^*, \boldsymbol{l}_t^*, \boldsymbol{h}_t) \times \boldsymbol{1}_{alive_t} + (1 - \boldsymbol{1}_{alive_t}) \theta_{Beq} \frac{(\boldsymbol{k}_t^* + \boldsymbol{k}_{Beq})^{1-\rho}}{1-\rho} \Big),$$

$$U^{G}\left(\lambda_{c}\right) = \sum_{t=1}^{T_{d}^{C}+1} \beta^{t} \left(u\left((1-\lambda_{c})\boldsymbol{c}_{t}^{**}, \boldsymbol{l}_{t}^{**}, \boldsymbol{h}_{t} = good\right) \times \boldsymbol{1}_{\textit{alive}_{t}} + (1-\boldsymbol{1}_{\textit{alive}_{t}}) \theta_{\textit{Beq}} \frac{\left(\boldsymbol{k}_{t}^{**} + \boldsymbol{k}_{\textit{Beq}}\right)^{1-\rho}}{1-\rho}\right)$$

• Lifetime welfare losses $= \lambda_c \overline{c}^{**}$ where $\rightarrow U^{BS} = U^G (\lambda_c)$ $\rightarrow \overline{c}^{**}$ is the average consumption in "always healthy" case

Introduction	Health shock process	lifecycle model	calibration	results
000000		0000	000	○○○○●○○
R3. Lifetim	e welfare losses			

	all	η_1	η_2	η_3
Compensated consumption equivalence	\$1,933	\$6,380	\$2,690	\$854
(% consumption equivalence, λ_c)	(10.6%)	(36.8%)	(14.8%)	(4.4%)
Contribution (%)	050/	220/	221/	
 Only medical expenses channel 	25%	39%	22%	17%
 Only income channel 	38%	57%	42%	9%
- Only survival channel	44%	32%	33%	77%

Using SVL=\$2M.

- \blacktriangleright Welfare losses vary a lot across η
- On average, survival channel is the most important channel for welfare loss
- Income channel is the most important for {η₁, η₂} while the survival channel is the most important for η₃.

Introduction	Health shock process	lifecycle model	calibration	results
000000	000000000	0000	000	00000000

R3. Lifetime losses due to bad health: concentration and contribution of η

	Concentration			variation	
-	top 5%	top 10%	top 20%	due to η	
Monetary losses (21-death)					
- Income losses + medical losses (Ins+OOP)	38%	56 %	75%	69%	
Welfare losses					
- Compensated consumption equivalence	24%	42%	71%	30%	

Use 2% interest rate for monetary loss.

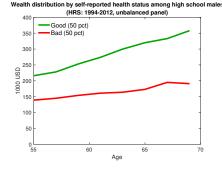
Highly concentrated

 $\blacktriangleright\,$ A large variation in both monetary and welfare loss is due to $\eta\,$

\blacktriangleright But the variation due to η is lower for welfare losses

- η directly affects the number of periods being unhealthy
- But η only indirectly affects life expectancy.

variation in T^d


Introduction	Health shock process	lifecycle model	calibration	results
000000	000000000	0000	000	0000000●

Conclusions

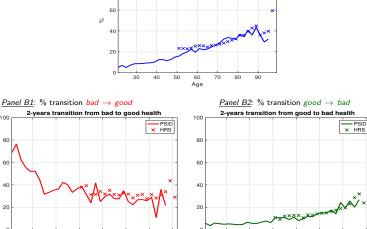
- We quantify the effects of health in a life-cycle model of high school males that matches
 - (1) Long-run health dynamics
 - (2) Income-health gradient
 - (3) Wealth-health gradient
- Health type: important to capture (1)
- Composition difference btw. the healthy and unhealthy: important for (3)
- We measure lifetime loss due to bad health
 - i. Lifetime costs of bad health are highly concentrated
 - ii. Survival channel attributes a lot to welfare loss
 - iii A large variation in lifetime losses are pre-determined in early stage of life (69% for monetary loss, 30% for welfare loss)

Is the accumulated loss due to bad health large?

Wealth-health gradient among high school men (HRS: 1994-2016)

- good health \in {excellent, very good, good}; bad health \in {fair, poor}

- net worth: controlled for year effects and family sizes


The wealth gap is large even among a relatively homogeneous group

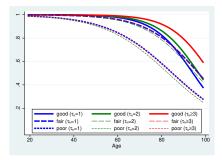
Bias measure of losses if there is a composition difference

▶ back

Health status data (PSID, HRS)

De Nardi, Pashchenko, and Porapakkarm

Aae



Aae

Estimated health-dependent survival probability (HRS: 1994-2017)

Logit regression of survival probability

$$logit\left(\zeta_{t}|h_{t},\tau_{h}\right) = \begin{cases} \underbrace{f_{age}^{\zeta^{h}}}_{age \text{ polynomial}} + \sum_{\tau=1}^{2} a_{\tau}^{\zeta B} \mathbf{1}_{(\tau_{h}=\tau)} + a_{3}^{\zeta B} \mathbf{1}_{(\tau_{h}=3)} & \text{if } h_{t} \in \{P,F\} \\ \\ f_{age}^{\zeta^{G}} + \sum_{\tau=1}^{2} a_{\tau}^{\zeta G} \mathbf{1}_{(\tau_{h}=\tau)} + a_{3}^{\zeta G} \mathbf{1}_{(\tau_{h}=3)} & \text{if } h_{t} = G. \end{cases}$$

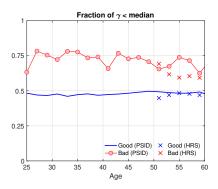
Predicting health type

What observables (\mathbf{X}_{t_0}) are informative about health type (η) ?

▶ Initial health (h_{t_0})

Fixed labor productivity (γ)

Fixed effect regression of log labor income $log(inc_{it}) = \sum_{age=20}^{65} \sum_{j=\{G,B\}} d_t^j \cdot D_{it}^{age} \cdot \mathbf{D}_{h_{it}=j} + \gamma_i + u_{it},$ • FE estimation

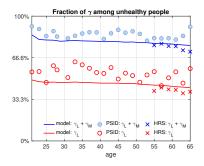

lntitial net worth (k_{t_0})

🕨 back

Health status and fixed productivity γ

Fixed effect regression of log labor income :

$$log(inc_{it}) = \sum_{age=20}^{65} \sum_{j=\{G,B\}} d_t^j \cdot D_{it}^{age} \cdot \mathbf{D}_{h_{it}=j} + \gamma_i + u_{it},$$



more low fixed productivity among unhealthy

Health status and fixed productivity γ

Fixed effect regression of log labor income :

$$log(inc_{it}) = \sum_{age=20}^{65} \sum_{j \in \{G,B\}} d_t^j \cdot D_{it}^{age} \cdot \mathbf{D}_{h_{it}=j} + \gamma_i + u_{it},$$

• There are proportionately more γ_L among unheathy people.

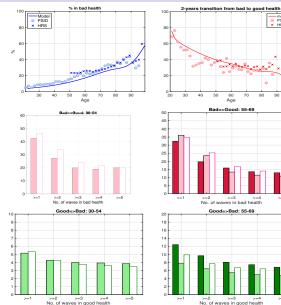
▶ back

Results : health type prediction

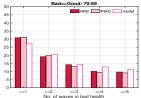
	T=5	T=4	T=3	T=2	T=1
$h_{t_0} = P$	1.463	2.072*	2.410	2.386	1.022
$h_{t_0} = G$	-1.457***	-1.429***	-1.879***	-1.921***	-2.250***
2^{nd} tercile of γ 3^{rd} tercile of γ	-0.247 -1.203 ^{***}	-0.337 -1.374 ^{***}	-0.509** -1.188 ^{***}	-0.546 ^{**} -1.286 ^{***}	-0.642*** -1.355 ^{***}
$\begin{array}{l} 2^{nd} \text{ quintile of } k_{t_0} \\ 3^{rd} \text{ quintile of } k_{t_0} \\ 4^{th} \text{ quintile of } k_{t_0} \\ 5^{th} \text{ quintile of } k_{t_0} \end{array}$	-0.002 -0.620 -0.749 -2.348 ^{***}	-0.129 -0.429 -0.606 -1.616 ^{****}	-0.048 -0.367 -0.691* -1.169***	-0.459 [*] -0.378 -0.701 ^{**} -1.280 ^{***}	-0.469 [*] -0.603 ^{**} -0.759 ^{***} -1.264 ^{***}

- A lower coefficient means lower probability of worst health type (η_1)

- We control for age t₀ and cohorts (10-year bracket)

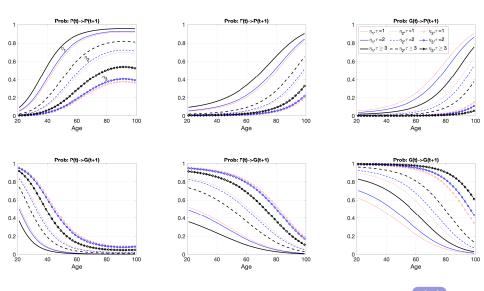

Results : Dynamics of health status: model (T=3) vs data (PSID, HRS)

PSID × HRS


> 90 100

> > >=5

>=5

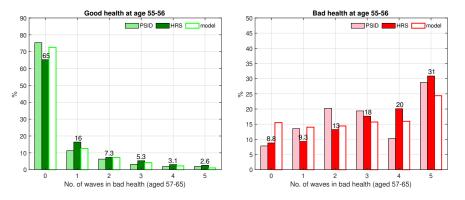


De Nardi, Pashchenko, and Porapakkarm

Lifetime Cost of Bad Health

Estimated health shock process

De Nardi, Pashchenko, and Porapakkarm


Sample from PSID: 1984-2017

% Trans	% Transition from bad to good health conditioned on being in bad health								
	>= 1	>= 2	>= 3	>= 4	>= 5	>= 6			
number of individual-waves									
30-54	1420	646	375	230	141	83			
55-69	512	296	196	146	106	74			
70+	166	87	57	39	29	22			
# individual	1194	610	373	242	166	111			

% Transi	% Transition from good to bad health conditioned on being in good health								
	>=1	>= 2	>= 3	>= 4	>= 5	>= 6			
number of individual-waves									
30-54	11984	10338	8855	7461	6065	4698			
55-69	2624	2330	2113	1942	1763	1572			
70+	692	630	602	560	541	509			
# individual	2877	2554	2301	2041	1770	1505			

Distribution of unhealthy periods between 57-65: Model vs HRS

(Additional validation)

HRS: balanced panel of healthy individuals at 55

Model: working-age individuals

Consumption-saving problem

$$\max_{c_t,k_{t+1}} u(c_t,l_t,h_t) + \beta \left(\zeta_t^{\ h} E_t V_{t+1}(\mathbb{S}_{t+1}) + \left(1 - \zeta_t^{\ h}\right) \theta_{Beq} \left(\frac{k_{t+1} + k_{Beq}}{1 - \rho}\right)^{1 - \rho} \right)$$

$$\underbrace{k_t (1+r)}_{\text{total asset}} + \underbrace{exp \left(z_t^h \right) \ l_t}_{\text{labor inc}} - \text{OOP med}_{it} - \text{Ins prem} - \text{Tax} + T^{SI} (\bar{c}) = c_t + k_{t+1}$$

back

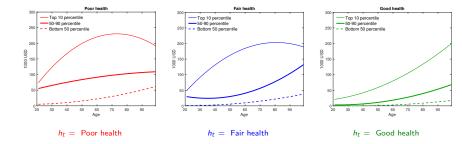
Stochastic processes estimated outside the model

Fixed effect regression of log labor income (PSID) :

$$log(inc_{it}) = \sum_{age=20}^{65} \sum_{j=\{G,B\}} d_t^j \times D_{it}^{age} \times \mathbf{D}_{h_{it}=j} + (\gamma_i + y_{it}),$$

• Health-dependent labor income process (z_t^h)

$$\begin{aligned} z_{it}^{h} &= \lambda_{t}^{h} + \gamma_{i} + y_{it} \\ y_{it} &= \rho_{y} y_{it-1} + \varepsilon_{it}; \quad \varepsilon_{it} \sim \textit{iid } N\left(0, \sigma_{\varepsilon}^{2}\right) \end{aligned}$$

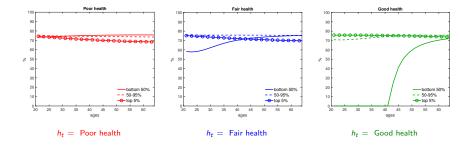

•
$$\rho_y = 0.947, \ \sigma_{\varepsilon}^2 = 0.02, \ \sigma_{z_0}^2 = 0.09, \ \sigma_{\gamma}^2 = 0.05$$

λ^h_t is used to match average labor income among worker with good, fair, and poor health

back

Health-dependent total medical expenses (x_t^h)

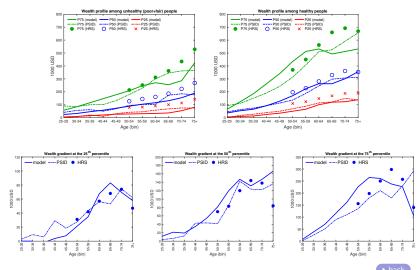
 \blacktriangleright x_t^h is directly estimated from MEPS



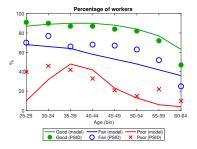
• $cvg(x_t^h, i_H)$ is estimated from people with ESI or ind insurance

• $g_t^{h,z}$ is parameterized as a logit function and estimated from MEPS

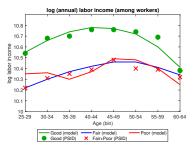
▶ back


Insurance coverage : $cvg(x_t^h, i_H)$

• $cvg(x_t^h, i_H)$ is estimated from people with ESI or ind insurance


Targeted moments : model vs PSID (HRS)

Wealth health gradient



Targeted moments: Model vs PSID

Health and labor market outcomes

% Workers by health status

Average labor income (among workers) by health

Implied health gradients: Model vs PSID (HRS)

	PSID (HRS)				Model			
	bottom 1/3	middle 1/3	top 1/3	bottom 1/3	middle 1/3	top 1/3		
25-34	12%	5%	2%	16%	2%	0%		
35-44	21%	8%	4%	22%	4%	2%		
45-54	22%	12%	8%	28%	9%	5%		
55-64	30% (36%)	15% (20%)	14% (13%)	33%	24%	11%		

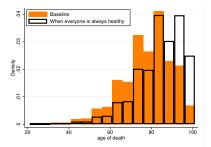
% unhealthy individuals in each <u>earnings tercile</u>

% unhealthy individuals in each wealth tercile

		PSID (HRS)	Model			
	bottom 1/3	middle 1/3	top 1/3	bottom 1/3	middle 1/3	top 1/3
25-34	10%	10%	5%	8%	5%	3%
35-44	17%	10%	5%	14%	7%	5%
45-54	23%	13%	9%	24%	10%	8%
55-64	33% (36%)	17% (21%)	12% (14%)	34%	17%	13%
65-74	36% (38%)	26% (24%)	17% (16%)	41%	27%	19%
75+	46% (41%)	37% (29%)	24% (25%)	47%	38%	29%

▶ back

R1. Life-time monetary loss due to bad health (working age)


	Over	entire life-c	ycle (21-de	ath)	Over working periods (21-64)			
	All	η_1	η_2	η_3	All	η_1	η_2	η_3
% of time in bad health	15%	58%	23%	4%	10%	55%	14%	1%
Annual monetary losses (% of avg earning)	\$1,511 <i>(3.9%)</i>	\$8,896 <i>(23%)</i>	\$1,935 <i>(5%)</i>	\$225 (0.6%)	\$1,031 <i>(2.7%)</i>	\$7,147 <i>(18%)</i>	\$1,201 <i>(3%)</i>	\$76 (0.2%)
Composition (%)								
- Medical loss paid by insurance	36%	33%	39%	39%	32%	33%	33%	18%
- Out-of-pocket medical loss	27%	22%	30%	36%	20%	20%	21%	11%
- Income losses	37%	45%	31%	24%	48%	47%	46%	71%

- Using 2% interest rate

- Average earning (2013) is \$38,648

Variation due to age at death

			When everyone are			
	all	η_1	η_2	η_3	variation due to η	always healthy
Average age at death	77.4	63.0	73.8	81.5	21 %	83.4

